- 学分
-
- 科币
-
- 工分
-
- 在线时间
- 小时
- 注册时间
- 2009-6-4
|
(转)科大学长对数学系学弟学妹的忠告
有些科大学生,尤其是新生,抱怨科大教材偏难;而且新生通常缺乏学习方法,对如何在大学中学习还没有清楚的概念。下面是一位科大数学系学长给科大数学专业学生的一些建议。我转发过来,仅供参考。
1、老老实实把课本上的题目做完。其实说科大的课本难,我以为这话不完整。科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题。事实上做1道难题的收获是做10道简单题所不能比的。
2、每门数学必修课至少要看一本参考书,尽量做一本习题集。
3、数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集。此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版。
4、线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>。莫斯科大学要求把上面的题全做光。建议大家在搞定亚洲第一难书的同时也把里面的题打通。
5、解析几何不要不重视。现在有种削弱几何课的倾向,甚至有的学校把解析几何课改成只有两课时,这样一来,几何训练不足,会很吃亏的。
6、常微要看看阿诺尔德的书,打通菲利波夫的习题集。
7、数论课是很重要的,起码可以锻炼思维能力。
8、数学分析、线性代数、解析几何、泛函、拓扑、抽象代数、实变、微分几何是最重要的课,大家脱层皮也要学好。要尽量加强这方面的工底,不然的话以后很吃亏。
9、有时间去物理系多听课,千万不要毕业了连量子力学也不懂,这样的数学家注定要被淘汰的。读读费曼物理讲义和郎道的理论物理教程。
10、华罗庚的<<数论导引>>的前言大家好好看看,多多领会!
11、想读数理统计和计算数学的要注意,统计和计算数学同样是数学类的专业,不要以为加上计算和统计就可以降低要求。
12、推荐一些参考书:
B.A.卓里奇《数学分析》(第一卷有中文版,第二卷未翻译,会俄文的一定要看)
S.M.Nikolsky,A course of mathematical analysis(有中文版)
A.I.Kostrikin,Introduction to algebra(有中文版)
M.Postnikov,Analytic geometry(有中文版)
M.Postnikov,Linear algebra and differential geometry(有中文版)
G.H.Hardy,An Introduction to the Theory of Numbers
V.I.Arnold,Ordinary differential equation(有中文版)
H.嘉当,解析函数论初步
Kolmogorov,Elements of the Theory of Functions and Functional Analysis(有中文版,亚马逊上出售英文版,20美元一套)
Fomenko,Differential geometry and topology
Kelley,General Topology(有中文版)
Bott,Differential forms in algebraic topology
莫宗坚《代数学》
Atiyah,Introduction to Commutative Algebra(有中文版)
Riesz,Functional Analysis(有中文版)
Landau,Mechanics(有中文版)
Goldstein,Classical Mechanics(有中文版)
Landau,The Classical Theory of Fields(有中文版)
Jackson,Classical Electrodynamics(有中文版)
Landau,Statistical Physics Part1(有中文版)
Kerson Huang,Statistical Mechanics
Landau,Quantum Mechanics(Non-relatisticTheory)(有中文版)
Greiner,Quantum Mechanics:A Introduction(有中文版)
黄昆《固体物理学》
Kittel,Introduction to Solid State Physics(有中文版)
费曼《费曼物理讲义》
玻恩《光学原理》
王梓坤《概率论基础及其应用》
方企勤《数学分析习题集》
普罗斯库列科夫《线性代数习题集》
法捷耶夫《高等代数习题集》
菲利波夫《常微分方程习题集》
沃尔维科斯基《复变函数习题集》
鄂强《实变函数的例题与习题》
符拉基米诺夫《偏微分方程习题集》
巴兹列夫《几何与拓扑习题集》
菲金科《微分几何习题集》 1,迪亚库的《天遇--混沌与稳定性的起源》,上海科技教育出版社。
这本书的内容是关于自牛顿时代以来,数学家探索一个经典的数学物理难题:三体问题的历史,很多新生可能以为数学家就是陈景润那样玩些和实际生活不相关问题的怪人,其实真正好的数学是要能够解决人类科学研究和实际生活中提出的各种数学问题的数学,数学不能离开工程和科学,现代工程技术和自然科学(也包括社会科学)是数学研究活的源泉,这本书里面的三体问题就是关于计算三个天体的运动轨道的问题,这个问题的研究就是现代动力系统理论的起源,甚至说现代的拓扑学也与此大有关系,庞加勒的经典著作《位置分析》很大程度上是为他的《天体力学讲义》提供数学工具,你们可以在这里看见很多数学大师的踪影:庞加勒,柯尔莫哥诺夫,阿诺尔德还有我国的年轻数学家夏志宏。 2,《数学——它的内容,方法和意义》,科学出版社。
这套书一共三本,是由多位俄罗斯著名数学家集体编写的,包括了二十世纪最优秀的数学家柯尔莫哥诺夫先生以及亚历山德罗夫先生、沙法列维奇先生、索伯列夫先生、盖尔范德先生等数学大师。基本上对大学本科的基础课程都做了一个简介,还推荐了一些参考书,这些书大部分国内都可以找到。 3,外尔的《对称》,上海科技教育出版社。
外尔也是二十世纪最优秀的数学家之一,据说是懂得物理最多的数学家,这本书当然也是值得一读的了。 4,克莱因《古今数学思想》,科学出版社。
关于数学历史的名著,不过这本书对以刘徽为代表的中国古代数学的辉煌成就比较忽视。 |
|